到底控制什么层面的固定效应? 最低, 最高, or随意?
前不久,社群讨论了1.“显著不显著的后背是什么, 非(半)参估计里解决内生性”,2.“计量社群里关于使用交互项还是中介效应分析开展机制研究的讨论”,3.“为啥面板数据回归中, 即使X对Y的解释程度很大, 但R-square一般都很小?”,4.多期DID中使用双向固定效应可能有问题! 又如何做平行趋势检验? 多期DID方法的最新进展如何?,5.收入和年龄等变量是将其转化成有序离散变量还是当成连续变量进行回归呢?6.控制变量就能影响结果显著性, 所以存在很大操作空间, 调参数是常用手段吗?7.回归中常数项显著说明模型中有遗漏变量问题?8.审稿人有义务告诉你回归中可能的遗漏变量么?9.针对很多实证问题的讨论, 随手保存的部分内容以飨学者,10.未引入交互项主效应为正, 引入后变为负, 解释出来的故事特别好, 主效应符号确实增强了故事性,11.双向固定效应多期DID最新进展和代码汇总, 关于控制变量和固定效应选取的讨论,12.逐年匹配的PSM-DID操作策略, 多时点panel政策评估利器,13.多期DID前沿方法大讨论, e.g., 进入-退出型DID, 异质性和动态性处理效应DID, 基期选择问题等,14.针对经济学领域中介效应模型问题的回应和理性讨论,15.讨论a(b)对b(a)的新方向论文, 经济学期刊分区问题, 3个机制存在时计量模型设计问题,16.如果解决了内生性, 那么是否意味着证实了变量之间的因果关系呢?17.解释变量提升一个标准差,被解释变量提升几个百分比呢?18.关于DID中对照组与处理组的比例问题?19.双重差分法和事件研究法的区别主要在哪里?20.双重差分法和事件研究法的区别主要在哪里?21.统计上不显著的变量表明该变量对结果变量没有影响吗?22.IV与Y在理论上无直接关系, 但用Y对IV做回归发现IV是显著的, 这是咋回事?23.Heckman模型和工具变量IV之间的差异?24.X与Y负相关但回归系数却为正? OLS不显著但2SLS却显著?25.一定要控制时间固定效应吗?26.经济学家说论文是讲故事, 具体是啥意思啊? 最高点赞答案!等等。这些讨论中有很多非常高质量的内容值得被记录起来,因此后面会形成一个计量圈社群讨论专栏。
社群能坚持4-5年依然如初,还是在于对学术问题的讨论、分享和互助的精神存在。
正文
接着上一日的文章”固定效应: 目前看到解释的最清楚的帖子, 救命!“,今天继续就固定效应相关问题展开讨论,当然主要还是社群里的讨论。
社群群友最近在社群里就"到底控制什么层面的固定效应"展开了不少讨论。通过社群群友的抛砖引玉,希望这个问题引起更多学者的关注和讨论。
①
②
但,现在的问题是,当X与Y在同一数据层面时,例如,核心解释变量X是个体层面的,被解释变量Y也是个体层面的,为什么有些学者不控制个体固定效应,而是控制了更高层面的固定效应,包括控制了省份固定效应或行业固定效应?
元芳,你怎么看?
关于固定效应,参看:1.交互项! 交互项! 固定效应回归模型中的交互项!2.在Stata中如何做2SLS, DID, DEA, SFA, 面板PSM, 二值选择, 固定效应和时间序列?3.一定要控制时间固定效应吗?4.公司和个体固定效应总是更好吗? 关于固定效应使用和解释的最全指南!5.使用固定效应FE时良好做法对应的检查清单,6.双向固定效应多期DID最新进展和代码汇总, 关于控制变量和固定效应选取的讨论,7.快速估计带有高维固定效应的泊松模型, 这计算速度真快, 真实用!8.不能直接控制某个固定效应时, 我们能尽量做些什么呢?9.时间固定效应和时间趋势项的区别, 可以同时加?10.省份/行业固定效应与年份固定效应的交乘项固定效应,11.截面DID, 各种固定效应, 安慰剂检验, 置换检验, 其他外部冲击的处理,12.广义合成控制法gsynth, 基于交互固定效应的因果推断,13.固定效应模型+测量误差=有问题, 如何解决这问题呢?
1.用"因果关系图"来进行因果推断的新技能,2.因果推断专题:因果图,3.因果推断专题:有向无环图DAG,4.confounder与collider啥区别? 混淆 vs 对撞,5.三张图秒懂, 混淆, 中介, 调节, 对撞, 暴露, 结果和协变量的复杂关系,6.中介效应检验流程, 示意图公布, 不再畏惧中介分析,7.图灵奖得主Pearl的因果推断新科学,Book of Why?8.前沿: nature刊掀起DAG热, 不掌握就遭淘汰无疑!因果关系研究的图形工具!9.前沿: 卫星数据在实证研究中的应用, 用其开展因果推断的好处!10.7大因果推断大法精选实证论文, 可用于中国本土博士课堂教学!11.随机分配是什么, 为什么重要, 对因果关系影响几何?12.应用计量经济学现状: 因果推断与政策评估最全综述,13.疫情期计量课程免费开放!面板数据, 因果推断, 时间序列分析与Stata应用,14.Python做因果推断的方法示例, 解读与code,15.内生转换模型vs内生处理模型vs样本选择模型vs工具变量2SLS,16.不用IV, 基于异方差识别方法解决内生性, 赐一篇文献等等。
4年,计量经济圈近1500篇不重类计量文章,
可直接在公众号菜单栏搜索任何计量相关问题,
Econometrics Circle
数据系列:空间矩阵 | 工企数据 | PM2.5 | 市场化指数 | CO2数据 | 夜间灯光 | 官员方言 | 微观数据 | 内部数据计量系列:匹配方法 | 内生性 | 工具变量 | DID | 面板数据 | 常用TOOL | 中介调节 | 时间序列 | RDD断点 | 合成控制 | 200篇合辑 | 因果识别 | 社会网络 | 空间DID数据处理:Stata | R | Python | 缺失值 | CHIP/ CHNS/CHARLS/CFPS/CGSS等 |干货系列:能源环境 | 效率研究 | 空间计量 | 国际经贸 | 计量软件 | 商科研究 | 机器学习 | SSCI | CSSCI | SSCI查询 | 名家经验计量经济圈组织了一个计量社群,有如下特征:热情互助最多、前沿趋势最多、社科资料最多、社科数据最多、科研牛人最多、海外名校最多。因此,建议积极进取和有强烈研习激情的中青年学者到社群交流探讨,始终坚信优秀是通过感染优秀而互相成就彼此的。